Fractions of the Future

1	1 2	3	1 4	5	<u>1</u> 6	$\frac{1}{7}$	8	<u>1</u> 9	10
							8	1 6	101
				<u>1</u> 5	<u>1</u>	1		10	10
		3	- 4	(H		1/7	8	9	10
					1		- ∣∞	. 10,	101
	2		- 4	1 5		1/7	-18	9	100
				<u>1</u>	<u>1</u>	1/7		9	1917
		3			<u>1</u> 6		← ∞	<u>1</u>	-lo
			1 -14	1 5		1/7	← ∞	100	0
					1 9	1 7		1 =	101
							ω	1 0	10

info@RightStartMath.com

Fraction History

- Latin "frangere" meaning "to break."
- Considered only as part of a whole.
- Could never be equal or greater than 1.

Activities for Learning, Inc. 20

Fraction History

- In the 1600s, the concept of fractions expanded.
- Now included a division perspective.
- Fractions could be equal to or more than 1.

1/3

Fraction History

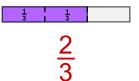
- In the 1600s, the concept of fractions expanded.
- Now included a division perspective.
- Fractions could be equal to or more than 1.

1 2 2

Fraction History

- In the 1600s, the concept of fractions expanded.
- Now included a division perspective.
- Fractions could be equal to or more than 1.

1 1 <u>2</u> <u>3</u>


Fraction History

- In the 1600s, the concept of fractions expanded.
- Now included a division perspective.
- Fractions could be equal to or more than 1.

2/3

Fraction History

- In the 1600s, the concept of fractions expanded.
- · Now included a division perspective.
- Fractions could be equal to or more than 1.

Fraction History

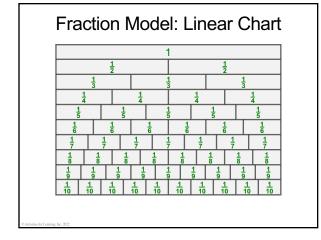
Old Fractions New Fractions

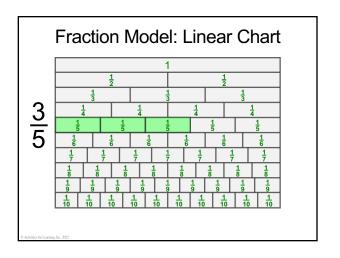
Always less than one $\frac{1}{3}$ Can be equal or greater $\frac{1}{3}$ $\frac{3}{3}$ $\frac{4}{3}$ Whole is fractured Viewed as division

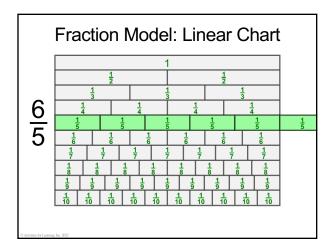
Familiar = "proper" Unfamiliar = "improper"
Limited view Supports understanding

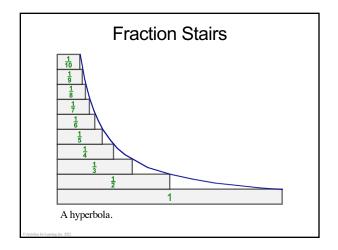
C Artistise for Lourning Inc. 2022

Fraction Model: Circles $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{5}$ $\frac{1}{5}$ $\frac{1}{5}$ $\frac{1}{6}$ $\frac{$


Fraction Model: Circles


- Experts in visual literacy say that comparing quantities in pie charts is difficult because most people think linearly. It is easier to compare along a straight line than compare pie slices.


 askoxford.com
- Specialists also suggest refraining from using more than one pie chart for comparison.


 statcan.ca

© Activities for Learning, Inc. 202

Games

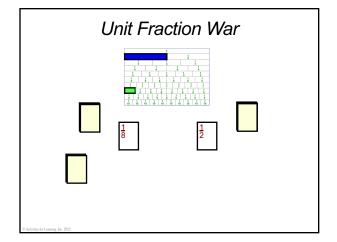
Games = Books

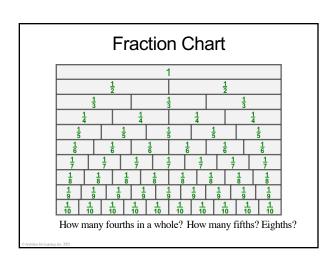
Math Reading

Games provide instant feedback.

Games provide interesting repetition needed for automatic responses in a social setting.

More importantly, games provide an application for the new information!

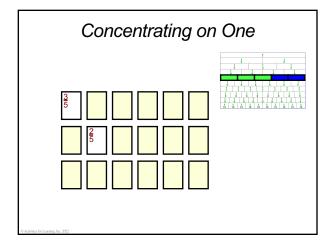

Unit Fraction War


Purpose: Practice for naming and comparing unit fractions.

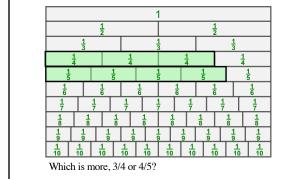
To help the children realize a unit fraction decreases as the denominator increases.

Goal: To collect all, or most, of the cards by comparing unit fractions.

© Activities for Learning, Inc. 20



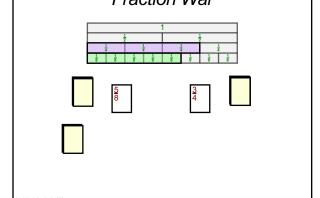
Concentrating on One


Purpose: To help the children realize that 5 fifths, 8 eighths, and so forth, make a whole.

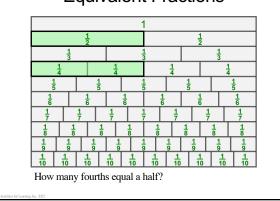
Goal: To find the pairs that make a whole.

ctivities for Learning Inc. 2

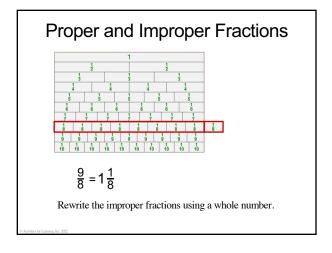
Fraction Chart

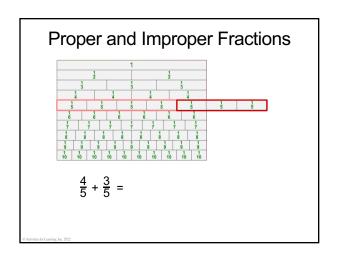

Fraction War

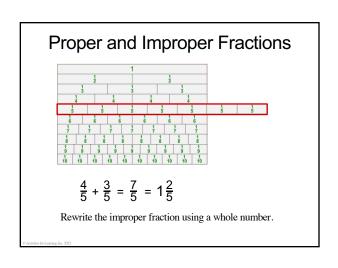
Purpose: To practice comparing ones, halves, fourths, and eighths in preparation for reading a ruler.

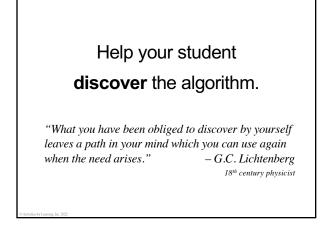

Goal: To capture all the cards.

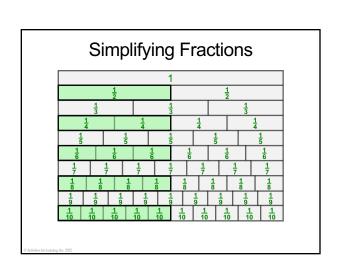

D Activities for Learning, Inc. 2

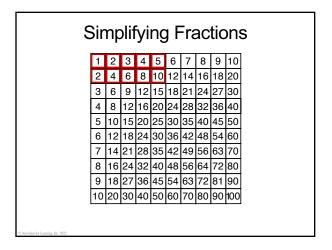

Fraction War

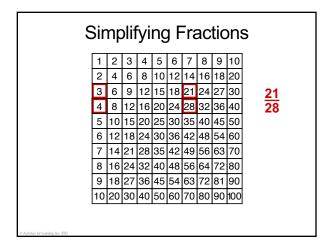


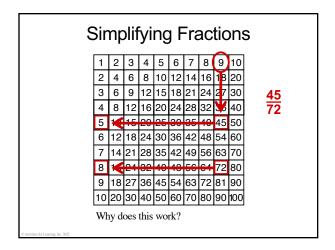

Equivalent Fractions

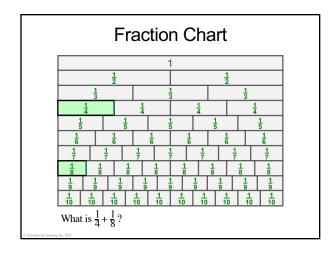


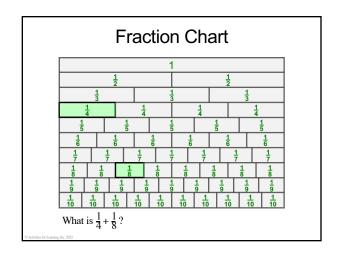


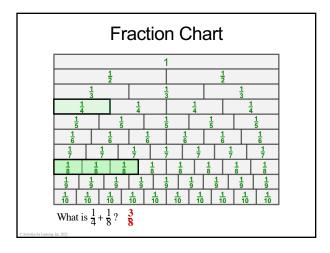


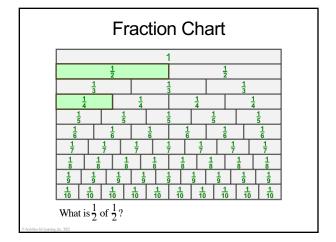












Remember, let your child discover the algorithm.

Multiplying Fractions

Multiplying is not exclusively repeated addition.

$$4 \times 4 = 4 + 4 + 4 + 4$$

$$\frac{1}{2} \times \frac{1}{2} = \frac{1}{2} + ?$$

ctivities for Learning, Inc. 2022

Multiplying Fractions

Multiplying is not exclusively repeated addition.

Area is a better model.

$$4 \times 4 =$$

Multiplying Fractions

$$\frac{1}{2} \times \frac{1}{2} =$$

One half of one half

Multiplying Fractions

$$\frac{1}{2} \times \frac{1}{2} =$$

One half of one half

Multiplying Fractions

$$\frac{1}{2} \times \frac{1}{2} =$$

One half of one half

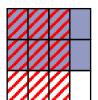
Multiplying Fractions

$$\frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$$

One half of one half

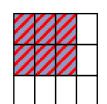
Multiplying Fractions

$$\frac{2}{3} \times \frac{3}{4} =$$


Three fourths of two thirds

Multiplying Fractions

$$\frac{2}{3} \times \frac{3}{4} =$$


Three fourths of two thirds

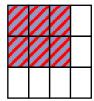
Multiplying Fractions

$$\frac{2}{3} \times \frac{3}{4} = \frac{6}{12}$$

Three fourths of two thirds

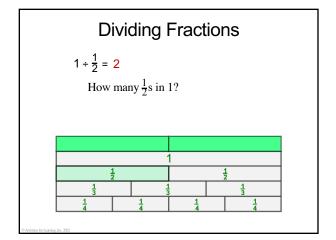
Multiplying Fractions

$$\frac{2}{3} \times \frac{3}{4} = \frac{6}{12}$$



The total number of rectangles is 3×4 .

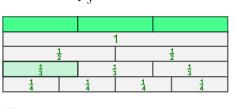
© Activities for Learning Inc. 'T


Multiplying Fractions

 $\frac{2}{3} \times \frac{3}{4} = \frac{6}{12}$

The total number of rectangles is 3×4 .

The number of colored crosshatched rectangles is 2×3 .



Dividing Fractions

$$1 \div \frac{1}{2} = 2$$

$$1 \div \frac{1}{3} = 3$$

How many $\frac{1}{3}$ s in 1?

Dividing Fractions

$$1 \div \frac{1}{2} = 2$$

$$1 \div \frac{2}{3} = 1\frac{1}{2} = \frac{3}{2}$$

$$1 \div \frac{1}{3} = 3$$

 $1 \div \frac{1}{3} = 3$ How many $\frac{2}{3}$ s in 1?

$$1 \div \frac{1}{4} = 4$$

$$1 \div \frac{1}{5} = 5$$

$$1 \div \frac{1}{6} = 6$$

Dividing Fractions

$$1 \div \frac{1}{2} = 2$$

$$1 \div \frac{2}{3} = \frac{3}{2}$$

$$1 \div \frac{1}{2} = 3$$

$$1 \div \frac{1}{3} = 3$$
 $1 \div \frac{3}{4} = 1\frac{1}{3} = \frac{4}{3}$

$$1 \div \frac{1}{4} = 4$$

How many $\frac{3}{4}$ s in 1?

$$1 \div \frac{1}{5} = 5$$

$$1 \div \frac{1}{6} = 6$$

Dividing Fractions

$$1 \div \frac{1}{2} = 2$$

$$1 \div \frac{2}{3} = \frac{3}{2}$$

$$1 \div \frac{1}{3} = 3$$

$$1 \div \frac{3}{4} = \frac{4}{3}$$

$$1 \div \frac{1}{4} = 4$$

$$1 \div \frac{2}{5} = \frac{5}{2}$$

$$1 \div \frac{1}{5} = 5$$

$$1 \div \frac{5}{8} = \frac{8}{5}$$

$$1 \div \frac{1}{6} = 6$$

$$1 \div \frac{4}{7} = \frac{7}{4}$$

Guide the child to making the discovery that the answers are the inverted form of the divisor.

Fraction Division War

Purpose: Practice in dividing fractions. To help the children realize the quotient is the inverted form of the divisor.

Goal: To collect all, or most, of the cards by having the greatest quotient.

Articities for Learning Top. 20

Fraction Division War 1 2 2 1 4 4

Fraction Division War

ctivities for Learning, Inc. 2022

More Dividing Fractions

$$1 \div \frac{1}{4} = 4$$

 $2 \div \frac{1}{4} = 2 \times (1 \div \frac{1}{4})$

More Dividing Fractions

$$1 \div \frac{1}{4} = 4$$

$$2 \div \frac{1}{4} = 2 \times (1 \div \frac{1}{4}) = 2 \times 4 = 8$$

More Dividing Fractions

$$1 \div \frac{1}{4} = 4$$

$$2 \div \frac{1}{4} = 2 \times (1 \div \frac{1}{4}) = 2 \times 4 = 8$$

$$3 \div \frac{1}{4} = 3 \times (1 \div \frac{1}{4}) = 3 \times 4 = 12$$

$$\frac{1}{2} \div \frac{1}{4} = \frac{1}{2} \times (1 \div \frac{1}{4}) = \frac{1}{2} \times 4 = 2$$

$$\frac{1}{3} \div \frac{1}{4} = \frac{1}{3} \times (1 \div \frac{1}{4}) = \frac{1}{3} \times 4 = \frac{4}{3}$$

$$\frac{3}{4} \div \frac{1}{4} = \frac{3}{4} \times (1 \div \frac{1}{4}) = \frac{3}{4} \times 4 = \frac{12}{4} = 3$$

criticises for Learning Inc. 2022

Fraction Chart

Allow the child to explore the whole picture and relationships within the whole using the linear perspective.

In Conclusion ...

Math needs to be taught so 95 percent is understood and only 5 percent memorized.

Richard Skemp
-- major pioneer in
mathematics education

In Conclusion ...

Our goal as a teacher of mathematics is to help our children transform, expand, and refine these beginning ideas into deeper mathematical thinking.

- Dr. Joan A. Cotter

ivities for Learning, Inc. 202