RightStart ${ }^{\text {TM }}$ Mathematics
 Corrections and Updates for Level E / Grade 4 Lessons and Worksheets, second edition

LESSON/WORKSHEET	CHANGE DATE	CORRECTION OR UPDATE
Lesson 6	05/20/2021	On the second page, right above the short multiplication table, the answer to 8×9 should be "go to row 8 and down to row 9 " not "go to row 6 and down to row 8."
Lesson 8	04/18/2018	The Quotient and Remainder game instructions should read: Place the dividend card, the multiplication card, first in the row, as shown below."
Lesson 19 Worksheet 7	12/01/2020	The last problem on the worksheet should read "Write any 3digit number with no two numbers being the same."
Lesson 19	12/01/2020	On the second page, an explanation was added across from the Worksheet 7 paragraph: If the first and last numbers of the 3digit number are sequential, such as 493 , the difference will be 99. Assume a 0 precedes the 99 , giving the reverse number as 990, then the final sum will be 1089. Peter, age 9 , found that if the first and third number are the same, such as 181 , or if all three digits are the same, such as 333 , the final sum is another number!
Lesson 26	11/18/2016	At the bottom of the page, it reads: "Repeat for: 10,380-8267". It should read: "Repeat for: 10,280-8367"
Lesson 28 Worksheet 15-A	01/03/2019	The magic square on the bottom of the worksheet is incorrect. See attached PDF. Correct answers are shown here.
Lesson 36	04/18/2018	The Quotient and Remainder game instructions should read: Place the dividend card, the multiplication card, first in the row, as shown below."
Lesson 38 Classroom version only	07/31/2017	On the second page, the second drawing board is depicted to the right of the work, rather than under the worksheet's information. It should look as shown here.
Lesson 55	11/18/2016	For the second Warm-Up, $6374-4736$ is 1638 , not 1636 . The check numbers are correct.

Lesson 56	03/29/2017	The game assigned for the day is F22.1, Corner with Eighths. Older fifth edition books do not have this game. Games are found on the pdf attached at the bottom of this document. This also will affect lessons $57,71,73,74,76,77,78$, and 138.
Lesson 61	06/02/2022	On the second page, under Using a calculator to find prime numbers, 7 and 11 are not factors, rather than not multiples, of 89 .
Lesson 62	02/09/2021	At the bottom of the first page, it asks what is the next prime number. [5] Then it asks what do you cross out? The answer should be $[15,25,35 \ldots, 95]$, not [5, 10, . . . 100]
Lesson 68	04/17/2017	On the second page, the third and fourth answers for the Worksheet 42 have the "small" numbers in the wrong place; (1) are too far to the left. It should look like this:
Lesson 69	01/04/2021	On the second page, the check number for 240 in the second problem should be (6), not (0).
Lesson 70	01/03/2019	On the second page, the factors of 20 should be $1,2,4,5,10$, and 20, not 10 and 2.
Lesson 78	03/10/2017	Answers for Worksheet 51, third answer on the top row, should be 63-47/100 and 63.47, not 63-49/100 and 63.49.
Lesson 80	03/10/2017	
Lesson 82	03/10/2017 12/28/2017	$314496(0)$ (0) the Warm-Up multivide answer, there is an error in the middle of the calculations. It should be as follows: $\mathbf{1 5 7 2 4 8 0}$ 3144960 Also, the bottom of the first page has been changed to read as follows: Ask: What does the M+ key do? [adds to memory] What do you think the M- key does? [subtracts from memory] Change the problem to: $6 \times 9-5 \times 8=[14]$ and ask: How can you do it now? [Use the M- key instead of the $\mathrm{M}+$ key to subtract the second expression.]
Lesson 83	08/08/2023	For the Warm-Ups multivide, the check digit for 60 in 2352×60 should be (6), $1680 \div 5$ should be (6), the check digit for $336 \div 4$ should be (3), the check digit for $84 \div 3$ should be (3), and the check digit for $28 \div 2$ should be (1).
Lesson 84	08/19/2016	For the Warm-Ups multivide, the check digit for $1920 \div 5$ should be (3), the check digit for $384 \div 4$ should be (6), the check digit for $96 \div 3$ should be (6), and the check digit for $32 \div 2$ should be (5).

| Lesson 85 | | On the second page under the second heading, A Mile, a
 sentence was added at the end of the first paragraph: Ask: How
 many steps are needed to walk a mile? [2000 steps] This helps
 connect the upcoming question connecting 10,000 steps and
 5 miles. |
| :--- | :--- | :--- | :--- |
| Lesson 87 | $06 / 27 / 2023$ | In the bullet points under the gas prices, the fourth bullet should
 say "The 9/10 means $9 / 10$ of one cent, which is also nine
 thousandth of a dollar" rather than one thousandths of a dollar.
 The fifth bullet point should say "...and are also thousandths of
 a dollar," not thousands of a dollar. |
| Lesson 89 | $08 / 10 / 2023$ | |

Lesson 115		12/14/2019	The sample line plot for First Day of the Months in a Leap Year a leap year, A note was added, "All leap years will have three months that start on the same day of the week because January, April, and July start on the same day." The most common day will depend on what calendar year is being considered.				
Lesson 115		06/27/2023	The graph for Problem 3 should have another tickmark after the 3 with the " X " above that mark as the measurement is $3-1 / 4$, not $3-1 / 8$. No mark should be at the 3-1/8 mark on the line.				
Lesson 115	Worksheet 87	10/12/2023	The last question has been changed to: What is the difference in length between the most frequent dimension and the next most frequent dimension?				
Lesson 124	Worksheet 96	03/10/2017	Problem 3 should read "The diameter of the base is 4 units" not 2 units. PDF is attached.				
Lesson 125		03/10/2017	Regarding the picture of the geometry solids, the manufacturer changed the solids and the triangular prism is now a rectangular prism. The new graphic is shown here.				
Lesson 125		02/10/2023	In the solutions for the warm-up, the check number of 56 should be (2), not (7).				
Lesson 128		01/03/2019	The fourth paragraph on the second page has changed to read "Tell him to watch while you show him a procedure for finding the area. Make the 2×3 rectangle on the geoboard. Then touch any two boundary pegs with your non-writing hand. Count the uncovered boundary pairs then add the inside pegs to find the area. See the figures below."				
Lesson 130		12/28/2017	The order of the columns in the two tables are changed to list $b, h, b \times h$, then Area.	b	h	$\times h$	Area
		4		1	4	2	
		2		3	6	3	
		5		4	20	10	
		1		5	5	$2{ }^{\frac{1}{2}}$	
		2		4	8	4	
		3		6	18	9	
		b		h	$b \times h$	Area	
		3		2	6	3	
		2		3	6	3	
		5		3	15	$7 \frac{1}{2}$	
		3		1	3	112	

Lesson 130	03/21/2024	The order of the first three rows has been changed to match the worksheet graphics.		$!$	[
			b	h	$b \times h$	Area
			2	3	6	3
			5	4	20	10
			4	1	4	2
			1	5	5	$2{ }_{2}^{1}$
			2	4	8	4
			3	6	18	9
			The area of half of $\boldsymbol{b} \times \boldsymbol{h}$.			$\text { ed to } b \times h \text { ? }$
Lesson 132	12/28/2017	On the top of the second page, the fourth line's area of the parallelogram should be 4, not 6 .				
Lesson 136	04/18/2018	The Quotient and Remainder game instructions should read: Place the dividend card, the multiplication card, first in the row, as shown below."				
Lesson 140 Worksheet 109	05/19/2017	The last question, number 159, should read "Which is longer, 3 feet or 1 meter?", not 3 yards or 1 meter. PDF of the worksheet is attached. Correct answer is 1 meter.				

Lesson 28: Review and Games 2

OBJECTIVES:

1. To review recent topics
2. To develop skills through playing math card games

MATERIALS:

1. Worksheet $15-\mathrm{A}$ or $15-\mathrm{B}$, Review 2
2. Math Card Games book, P34
3. Short Multiplication Table, Appendix p.1, if needed

ACTIVITIES FOR TEACHING:

Worksheet 15-A. Give the child the worksheet. Tell her to listen to the problems and write the answers. Read each problem twice.
43×10
$149+37$
70×8

Tell her to complete the worksheet. Solutions are below.

EXPLANATIONS:

The Review worksheets each have two versions. The second version can be used in various ways: as a quiz, as a test, as a check after tutoring, and so forth.

Ask the child to correct any errors during the lesson.

See page iii, number 17 of "Some General Thoughts on Teaching Mathematics," for additional information.

Name: \qquad
Date: \qquad
Write only the answers.

Write the answers.

$$
\begin{aligned}
& 582+69= \\
& 87+\ldots=200 \\
& (6 \div 3)+(6 \div 2)=
\end{aligned}
$$

Add or subtract. Use check numbers.

$$
\begin{array}{rrr}
9575(~) & 9763() & 9515() \\
+5592() \\
\hline
\end{array}
$$

Utah's population is two million nine hundred thousand eight hundred seventy-two. Underline the period names. Write the number using digits and commas. \qquad

Fill in the blanks.

$$
\begin{aligned}
& 3 \times \ldots=24 \\
& 8 \times \ldots=64 \\
& 7 \times \ldots=14 \\
& \boxed{\times}=11=44 \\
& \times 9=54 \\
& 6 \times \ldots=24 \\
& 2 \times \ldots=14
\end{aligned}
$$

Draw lines to match the expressions.

4×4	16×2
8×5	$6 \times 5+6 \times 2$
8×4	5×5
$20+5$	8×2
9×7	$6 \times 7-2$
6×7	$50-1$
$32 \div 4$	$9 \times 6+2$
7×7	$70-7$
8×7	$2 \times 2 \times 2$

Complete the magic square.

14	5	1	7
-1		8	13
		8	
8	11		-2

Play: The first player plays her cards to form all or part of the improper fractions. Any number of cards may be played per turn and to any row. Example shows $7 / 2$ and $48 / 5$. The numerator and denominator may be played in either order.
The player completing a fraction takes the row, sets aside the basic number cards to be reused, and collects the fraction card.
A player unable to play forms a new mixed number by laying down one of his basic cards and one of the fraction cards from the stock.
Always keep at least two mixed numbers on the table; when a row
 is completed and collected, prepare new mixed numbers from the stock. Reuse the basic number cards if the stock becomes exhausted.

F22.1 CORNERS WITH EIGHTHS

This is a fraction version of Corners Three (A38). The scoring is what makes this a fraction game; the numbers on the cards are considered to be eighths. The scoring provides practice in adding mixed numbers mentally.
Objective: To practice adding eighths and changing improper fractions to proper fractions without simplifying.
Number of players: Two to four.
Cards: The 50 Corners cards.
Layout: The stack of cards is placed face down on the table. Each player draws four cards initially and draws another card each time after playing a card. Players' cards are laid out face up in full view of all players.
Object of the game: To make the highest score.
Play: The rules of the game are the same as Corners Three (A38), except that the numbers on the cards are considered to be eighths.
Players do their own scoring. Most of the calculating can be done mentally. Following are some examples of scoring:

$$
\begin{aligned}
& \text { Initially joining a } 5 \text { and } 7: \frac{12}{8}=1 \frac{4}{8} \\
& \text { Next joining a } 7 \text { and } 8: \quad 1 \frac{4}{8}+\frac{15}{8}=1 \frac{19}{8}=3 \frac{3}{8} \\
& \text { Next joining a } 9 \text { and } 9: \quad 3 \frac{3}{8}+\frac{18}{8}=5 \frac{5}{8}
\end{aligned}
$$

F22.2 CORNERS WITH TENTHS

This is a another fraction version of Corners Three (A38). For scoring the numbers on the cards are considered to be tenths. The game is played like Corners with Eighths (F22.1) except the numbers on the cards are tenths.

F22.3 SUBTRACTION CORNERS WITH EIGHTHS

To play this Corners subtraction game, players start with a certain value and subtract their scores. The winner is the first player to reach zero or the player with the lowest score if no one can play. The game is played like Corners with Eighths (F22.1).
The initial scores are as follows:

Number of players	2	3	4
Initial score	45	30	22

\qquad
Date: \qquad

For the problems below, use the tangrams shown to find the percentage asked for.
Use your percentage circle to show the answer, then record it below. Shade or hatch the circle so that it looks like
 the percentage circle answer.

What percentage of the tangrams are in the darker color? \qquad

What percentage of the tangrams are quadrilaterals?

What percentage of the tangrams have right angles?
\qquad

What percentage of the tangrams are polygons?

What percentage of the tangrams are triangles?

What percentage of the tangrams are rhombuses?
\qquad
\qquad
\qquad
\qquad
Date: \qquad

1. Which of the figures below are polygons? \qquad

2. Explain why the others are not polygons. \qquad

INFORMATION: A regular polygon has congruent sides and congruent angles.

3. Which pentagons above have all sides congruent? \qquad
4. Which pentagons above have all angles congruent? \qquad
5. Which pentagons above are regular pentagons? \qquad
6. What is another name for a regular triangle? \qquad
7. What is another name for a regular quadrilateral? \qquad
8. Which of the polygons in the first question are regular polygons? \qquad
\qquad

1. Draw the three views, top, front, and side, for a square pyramid that is 6 units high. The square base is 4 units on a side.

3. Draw the three views for a cone that is 8 units tall. The diameter of the base is 4 units. The " x " marks the center of the circle.

4. Draw the three views for the Problem 1 pyramid but now it is truncated so it is only 3 units high.

5. Draw the three views for the cone in Problem 3 but now it is truncated so it is now only 4 units tall. The " x " marks the center of the circle.

\qquad
Date: \qquad

137-142. Draw lines to match each triangle by sides and angles.

143-145. Draw all the lines of symmetry in the figures below and answer the questions.

How many lines
of symmetry? \qquad

How many lines
of symmetry? \qquad

How many lines
of symmetry? \qquad

146-159. Fill in the blanks.
If you turn 360°, where will you end? \qquad
Name the angles in an isosceles right triangle.
What is special about the sides in an equilateral triangle. \qquad
How many angles does an hexagon have? \qquad
Can a rectangle also be a square? \qquad
Can a parallelogram be a square? \qquad
Can a polygon have only two sides? \qquad

How many inches are in 2 feet? \qquad
How many yards is 6 feet? \qquad
How many centimeters are in 2 decimeters? \qquad
How many decimeters are in a half a meter? \qquad
How many centimeters are in a meter? \qquad
How many milliliters are in a liter? \qquad
Which is longer, 3 feet or 1 meter? \qquad

