
Fractions: Seeing is Believing

based on the work of Dr. Joan A. Cotter

Fractions

• Fractions generally have a bad reputation.

- Often viewed as incomprehensible and unpredictable.
- Sometimes perceived as scary!

Fractions

- This is a huge misunderstanding.
- Fractions are necessary and useful.
- Fractions are amazing!

Fraction History

- Latin "frangere" meaning "to break."
- · Considered only as part of a whole.
- Could never be equal or greater than 1.

Fraction History

- In the 1600s, the concept of fractions expanded.
- Now included a division perspective.
- Fractions could be equal to or more than 1.

1/3

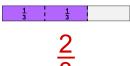
s for Learning, Inc. 2023

Fraction History

- In the 1600s, the concept of fractions expanded.
- Now included a division perspective.
- Fractions could be equal to or more than 1.

<u>2</u> 2

ities for Learning Inc. 2023


Fraction History

- In the 1600s, the concept of fractions expanded.
- Now included a division perspective.
- Fractions could be equal to or more than 1.

<u>2</u>

Fraction History

- In the 1600s, the concept of fractions expanded.
- Now included a division perspective.
- Fractions could be equal to or more than 1.

Fraction History

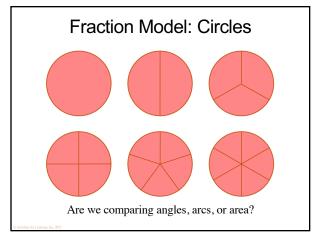
Old Fractions New Fractions

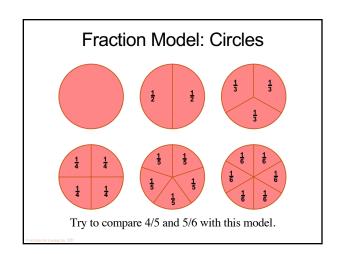
Always less than one Can $\frac{1}{3}$ Whole is fractured View

Familiar = "proper"

Limited view

Can be equal or greater

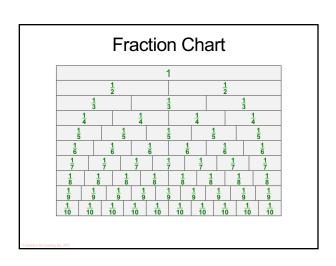

 $\frac{1}{3}$ $\frac{3}{3}$ $\frac{4}{3}$

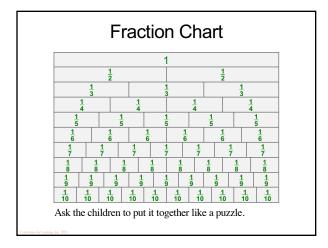

Viewed as division

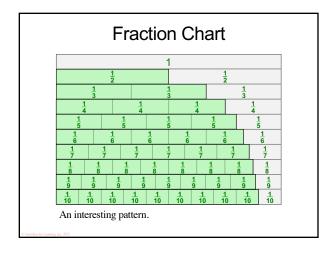
Unfamiliar = "improper"

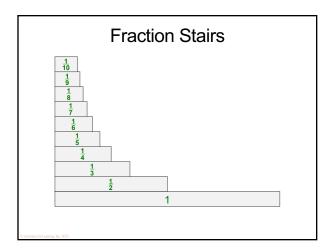
Supports understanding

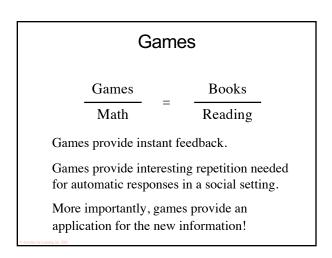
sitian for Laureina Ton 2023

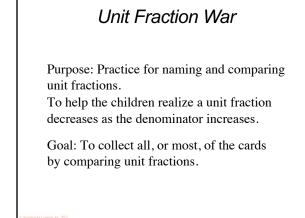


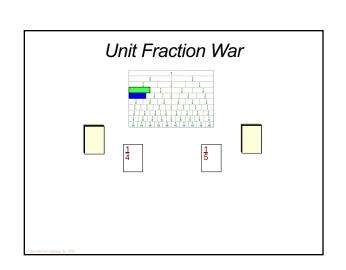


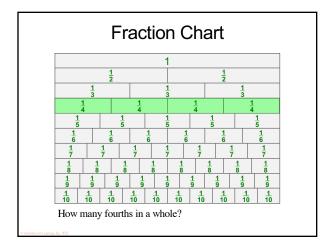

Fraction Model: Circles

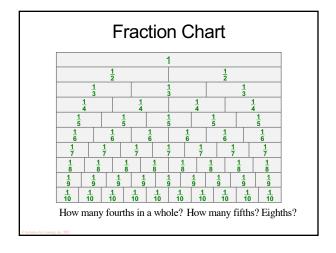

- Experts in visual literacy say that comparing quantities in pie charts is difficult because most people think linearly. It is easier to compare along a straight line than compare pie slices.

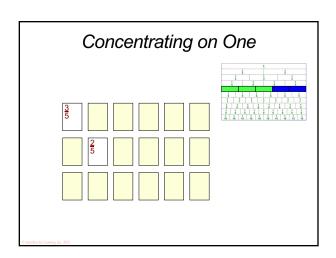

 askoxford.com
- Specialists also suggest refraining from using more than one pie chart for comparison. statcan.ca

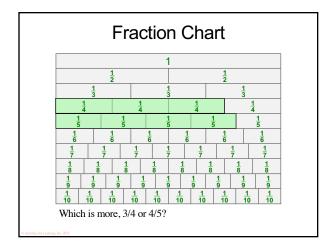


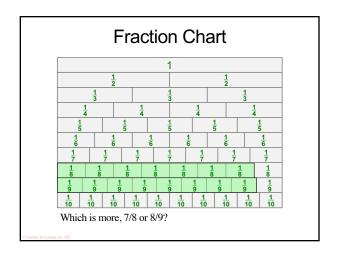


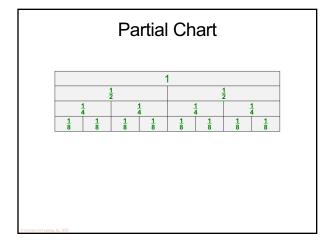


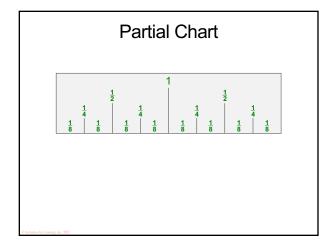


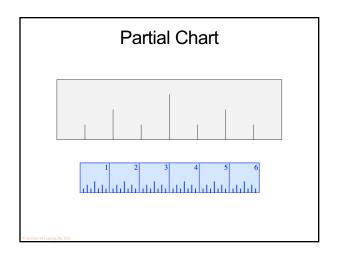


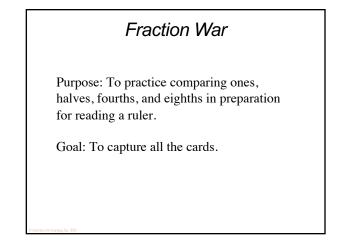


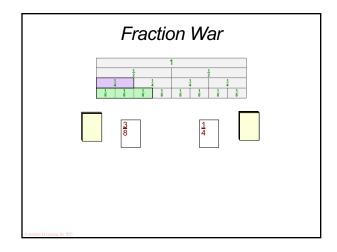

Concentrating on One

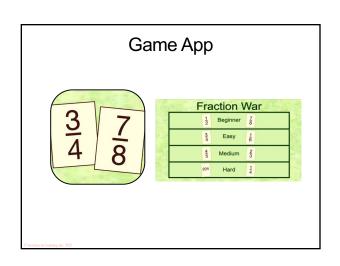

Purpose: To help the children realize that 5 fifths, 8 eighths, and so forth, make a whole.

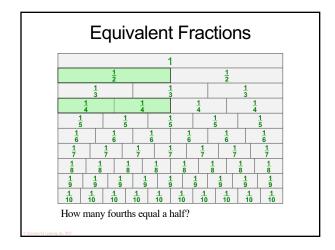

Goal: To find the pairs that make a whole.

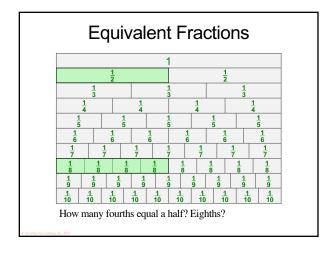


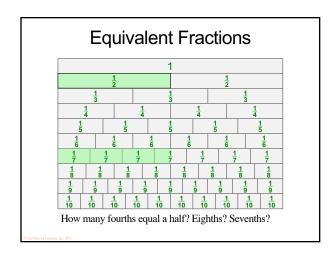


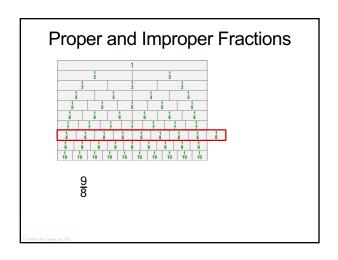


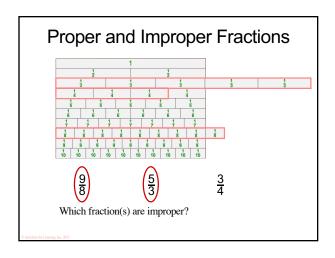


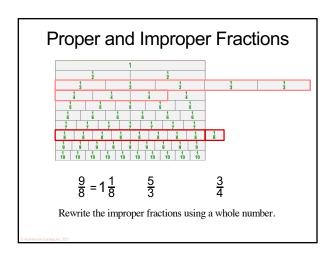


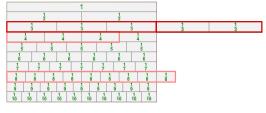


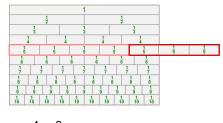










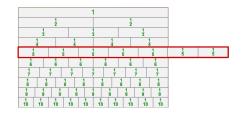

Proper and Improper Fractions

$$\frac{9}{8} = 1\frac{1}{8}$$
 $\frac{5}{3} = 1\frac{2}{3}$

Rewrite the improper fractions using a whole number.

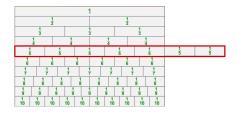
Proper and Improper Fractions

$$\frac{4}{5} + \frac{3}{5} =$$


....

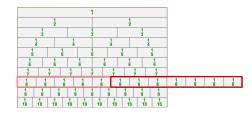
Proper and Improper Fractions

$$\frac{4}{5} + \frac{3}{5} = \frac{7}{5}$$


Proper and Improper Fractions

$$\frac{4}{5} + \frac{3}{5} = \frac{7}{5}$$

Rewrite the improper fraction using a whole number.


Proper and Improper Fractions

$$\frac{4}{5} + \frac{3}{5} = \frac{7}{5} = 1\frac{2}{5}$$

Rewrite the improper fraction using a whole number.

Proper and Improper Fractions

$$\frac{5}{8} + \frac{7}{8} =$$

ties for Laureina Toy 20

Proper and Improper Fractions

$$\frac{5}{8} + \frac{7}{8} = \frac{12}{8} = 1\frac{4}{8}$$

Rewrite the improper fraction using a whole number.

Help your child **discover** the algorithm.

"What you have been obliged to discover by yourself leaves a path in your mind which you can use again when the need arises." — G.C. Lichtenberg

18th century physicist

Simplifying Fractions

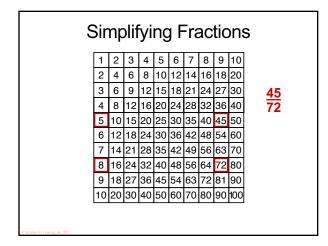
		1/2		1/2							
1/3					<u>1</u> 3	1 1 3					
1/4			1/4		$\frac{1}{4}$ $\frac{1}{4}$						
$\frac{1}{5}$ $\frac{1}{5}$					<u>1</u> 5		1/5		<u>1</u>		
1/6 1/6			16	16	<u>1</u>			<u>1</u> 6			
1 7			<u>1</u>		1 7	17		1 7	1 7		
18	1 8		1 8	18	18		18	1 8	1 8		
<u>1</u> 9	19	19	1 9		1 9	19	1 9	1 9	1 9		
1 10	1 10	1 10	1 10	<u>1</u> 10	10	10	10	10	1 10		

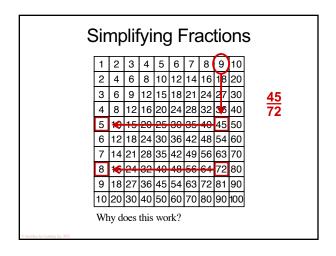
r Learning, Inc. 2023

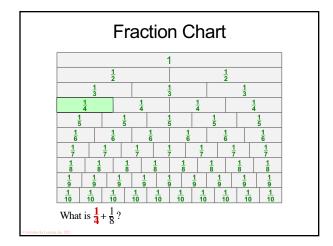
Simplifying Fractions

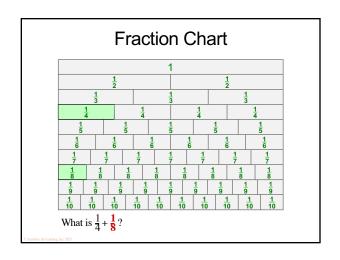
1	2	3	4	5	6	7	8	9	10
2	4	6	8	10	12	14	16	18	20
3	6	9	12	15	18	21	24	27	30
4	8	12	16	20	24	28	32	36	40
5	10	15	20	25	30	35	40	45	50
6	12	18	24	30	36	42	48	54	60
7	14	21	28	35	42	49	56	63	70
8	16	24	32	40	48	56	64	72	80
9	18	27	36	45	54	63	72	81	90
10	20	30	40	50	60	70	80	90	100

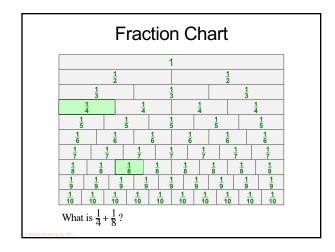
Activities for Learning, Inc. 202

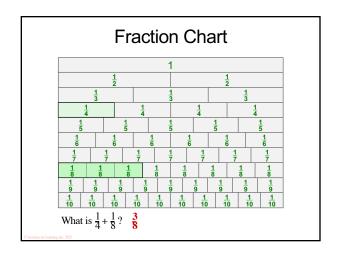

Simplifying Fractions

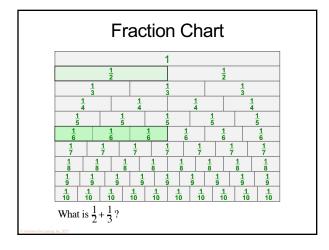

1	2	3	4	5	6	7	8	9	10
2	4	6	8	10	12	14	16	18	20
3	6	9	12	15	18	21	24	27	30
4	8	12	16	20	24	28	32	36	40
5	10	15	20	25	30	35	40	45	50
6	12	18	24	30	36	42	48	54	60
7	14	21	28	35	42	49	56	63	70
8	16	24	32	40	48	56	64	72	80
9	18	27	36	45	54	63	72	81	90
10	20	30	40	50	60	70	80	90	100

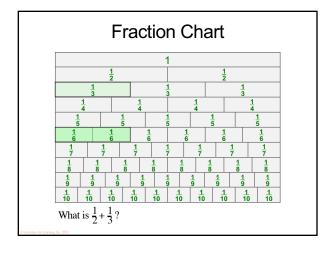

Simplifying Fractions

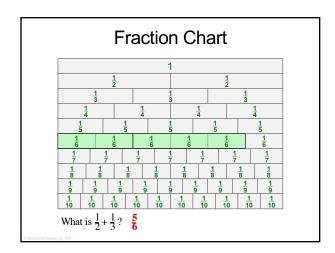

1	2	3	4	5	6	7	8	9	10
2	4	6	8	10	12	14	16	18	20
3	6	9	12	15	18	21	24	27	30
4	8	12	16	20	24	28	32	36	40
5	10	15	20	25	30	35	40	45	50
6	12	18	24	30	36	42	48	54	60
7	14	21	28	35	42	49	56	63	70
8	16	24	32	40	48	56	64	72	80
9	18	27	36	45	54	63	72	81	90
10	20	30	40	50	60	70	80	90	100

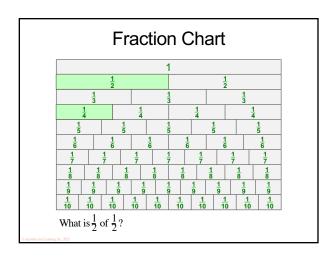

21 28

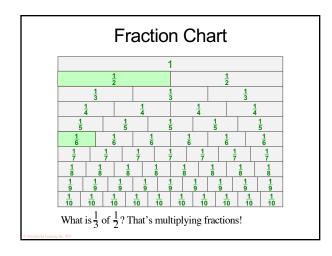












Multiplying Fractions Multiplying is not exclusively repeated addition. $4 \times 4 = 4 + 4 + 4 + 4$ $\frac{1}{2} \times \frac{1}{2} = \frac{1}{2} + ?$

Multiplying Fractions

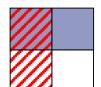
Multiplying is not exclusively repeated addition.

Area is a better model.

$$4 \times 4 =$$

Multiplying Fractions

$$\frac{1}{2} \times \frac{1}{2} =$$


One half of one half

Multiplying Fractions

$$\frac{1}{2} \times \frac{1}{2} =$$

One half of one half

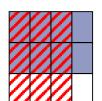
of one half

S RA LEBINING, BL. 2023

Multiplying Fractions

$$\frac{2}{3} \times \frac{3}{4} =$$

Three fourths of two thirds



Multiplying Fractions

Multiplying Fractions

$$\frac{2}{3} \times \frac{3}{4} =$$

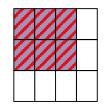
Three fourths of two thirds

Multiplying Fractions

$$\frac{2}{3} \times \frac{3}{4} = \frac{6}{12}$$

Three fourths of two thirds

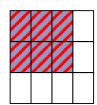
Multiplying Fractions


$$\frac{2}{3} \times \frac{3}{4} = \frac{6}{12}$$

The total number of rectangles is 3×4 .

Multiplying Fractions

$$\frac{2}{3} \times \frac{3}{4} = \frac{6}{12}$$



The total number of rectangles is 3×4 .

The number of colored crosshatched rectangles is 2×3 .

Multiplying Fractions

$$\frac{2}{3} \times \frac{3}{4} = \frac{6}{12}$$

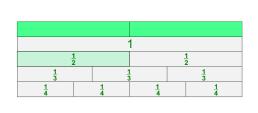
The total number of rectangles is 3×4 .

The number of colored crosshatched rectangles is 2×3 .

What is Division?

$$6 \div 2 = _{__}$$

How many 2s in 6?

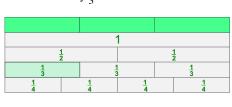


Number of groups of 2s; 3 groups

Dividing Fractions

$$1 \div \frac{1}{2} = 2$$

How many $\frac{1}{2}$ s in 1?



Dividing Fractions

$$1 \div \frac{1}{2} = 2$$

$$1 \div \frac{1}{3} = 3$$

How many $\frac{1}{3}$ s in 1?

Dividing Fractions

$$1 \div \frac{1}{5} = 2$$

$$1 \div \frac{1}{3} = 3$$

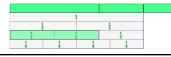
$$1 \div \frac{1}{4} = 4$$

$$1 \div \frac{1}{5} = \frac{1}{5}$$

$$1 \div \frac{1}{6} = 6$$

Dividing Fractions

$$1 \div \frac{1}{5} = 2$$


$$1 \div \frac{2}{3} = 1\frac{1}{2} = \frac{3}{2}$$

$$1 \div \frac{1}{2} = 3$$

How many $\frac{2}{3}$ s in 1?

$$1 \div \frac{1}{4} = 4$$

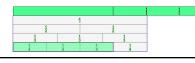
$$1 \div \frac{1}{6} = 6$$

Dividing Fractions

$$\div \frac{1}{2} = 2$$

$$1 \div \frac{1}{2} = 2$$
 $1 \div \frac{2}{3} = \frac{3}{2}$

$$1 \div \frac{1}{3} = 3$$


$$1 \div \frac{3}{4} = 1\frac{1}{3} = \frac{4}{3}$$

$$1 \div \frac{1}{4} = 4$$

 $1 \div \frac{1}{3} = 3$ $1 \div \frac{3}{4} = 1\frac{1}{3} = \frac{4}{3}$ $1 \div \frac{1}{4} = 4$ How many $\frac{3}{4}$ s in 1?

$$1 \div \frac{1}{5} = 5$$

$$1 \div \frac{1}{6} = 6$$

Dividing Fractions

$$1 \div \frac{1}{2} = 2$$

$$1 \div \frac{2}{3} = \frac{3}{2}$$

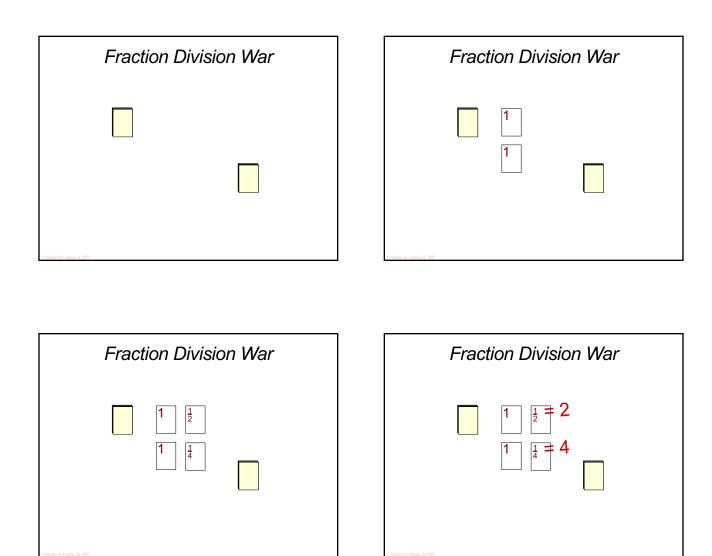
$$1 \div \frac{1}{2} = 3$$

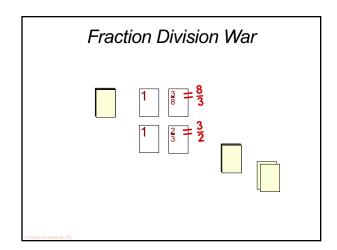
$$1 \div \frac{3}{4} = \frac{4}{3}$$

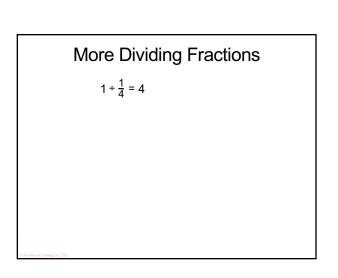
$$1 \div \frac{1}{4} = 4$$

$$1 \div \frac{2}{5} = \frac{5}{5}$$

$$1 \div \frac{1}{1} = 6$$


$$1 \div \frac{9}{8} = \frac{9}{5}$$


answers are the inverted form of the divisor.


Fraction Division War

Purpose: Practice in dividing fractions. To help the children realize the quotient is the inverted form of the divisor.

Goal: To collect all, or most, of the cards by having the greatest quotient.

More Dividing Fractions

$$1 \div \frac{1}{4} = 4$$

$$2 \div \frac{1}{4} = 2 \times (1 \div \frac{1}{4})$$

$$= 2 \times 4 = 8$$

More Dividing Fractions

$$1 \div \frac{1}{4} = 4$$
$$2 \div \frac{1}{4} = 2 \times (1 \div \frac{1}{4}) = 2 \times 4 = 8$$

More Dividing Fractions

$$1 \div \frac{1}{4} = 4$$

$$2 \div \frac{1}{4} = 2 \times (1 \div \frac{1}{4}) = 2 \times 4 = 8$$

$$3 \div \frac{1}{4} = 3 \times (1 \div \frac{1}{4})$$

$$= 3 \times 4 = 12$$

More Dividing Fractions

$$1 \div \frac{1}{4} = 4$$

$$2 \div \frac{1}{4} = 2 \times (1 \div \frac{1}{4}) = 2 \times 4 = 8$$

$$3 \div \frac{1}{4} = 3 \times (1 \div \frac{1}{4}) = 3 \times 4 = 12$$

More Dividing Fractions

$$1 \div \frac{1}{4} = 4$$

$$2 \div \frac{1}{4} = 2 \times (1 \div \frac{1}{4}) = 2 \times 4 = 8$$

$$3 \div \frac{1}{4} = 3 \times (1 \div \frac{1}{4}) = 3 \times 4 = 12$$

$$\frac{1}{2} \div \frac{1}{4} = \frac{1}{2} \times (1 \div \frac{1}{4})$$

$$= \frac{1}{2} \times 4 = 2$$

More Dividing Fractions

$$1 \div \frac{1}{4} = 4$$

$$2 \div \frac{1}{4} = 2 \times (1 \div \frac{1}{4}) = 2 \times 4 = 8$$

$$3 \div \frac{1}{4} = 3 \times (1 \div \frac{1}{4}) = 3 \times 4 = 12$$

$$\frac{1}{2} \div \frac{1}{4} = \frac{1}{2} \times (1 \div \frac{1}{4}) = \frac{1}{2} \times 4 = 2$$

$$\frac{1}{3} \div \frac{1}{4} = \frac{1}{3} \times (1 \div \frac{1}{4}) = \frac{1}{3} \times 4 = \frac{4}{3}$$

$$\frac{3}{4} \div \frac{1}{4} = \frac{3}{4} \times (1 \div \frac{1}{4}) = \frac{3}{4} \times 4 = \frac{12}{4} = 3$$

Fraction Chart

Allow the child to explore the whole picture and relationships within the whole using the linear perspective.

In Conclusion ...

Math needs to be taught so 95 percent is understood and only 5 percent memorized.

Richard Skemp
-- major pioneer in
mathematics education

In Conclusion ...

Our goal as a teacher of mathematics is to help our children transform, expand, and refine these beginning ideas into deeper mathematical thinking.

- Dr. Joan A. Cotter

16